clear clear matrix set matsize 800 set mem 500m cd [your drive partition] use [team_ops_r_1900_1924 data file] gen rppa=r/pa // run per plate appearnce *** create standardized variables *** bysort yearID: egen mean_ops = mean(ops) bysort yearID: egen sd_ops = sd(ops) gen z_ops = (ops - mean_ops) / sd_ops gen b_z=. gen b_r=. gen prun=. gen pzrun=. gen cons=. bysort yearID: egen mean_rppa = mean(rppa) bysort yearID: egen sd_rppa = sd(rppa) gen z_rppa = (rppa - mean_rppa) / sd_rp regress z_rppa z_ops **** raw and standarized season-by-season regressions foreach y of numlist 1900/2025 { regress rppa ops if year ==`y' replace b_r=_b[ops] if year == `y' replace cons=_b[_cons] if year == `y' predict yhat replace prun =yhat * pa if year ==`y' drop yhat regress z_rppa z_ops if year ==`y' replace b_z=_b[z_ops] if year ==`y' predict yhat replace pzrun= yhat * pa if year ==`y' drop yhat } **** export collapse b_z b_r cons ,by(yearID) save [rppa_regresson_coefficients], replace